

AGbliedtner

Laser I Optik I 3D-Druck

Group Production and Automation (Head: Prof. Dr. Jens Bliedtner)

www.eah-jena.de

- Working group production and automation
- Research projects and application
- Example: Starting an AM process (cloud based)
- Lab session

- Working group production and automation
- Research projects and application
- Example: Starting an AM process (cloud based)
- Lab session

Introducing the working group

Department of SciTec at University of Applied Sciences Jena

- Prof. Dr. Jens Bliedtner
- 3 laboratory engineer
- 6 PhD's
- 27 scientific and technical staff
- 1 Apprentice

Ernst-Abbe-Hochschule Jena University of Applied Sciences

Main focus

- Laser material processing
- Optical technologies
- Additive Manufacturing

Performance of

Bundesministerium

für Wirtschaft

und Energie

- Public and government research and funding
- Studies and developments of new technologies
- Advanced training in the field of lasers and optics

Laser Material Processing

Ernst-Abbe-Hochschule Jena University of Applied Sciences

-Manufacturing different kinds of materials

- Laser cutting
- Laser marking
- Laser (micro) welding (down to 5 µm)
- Laser metal deposition
- Laser polishing
- Laser ablation
- Laser surface texturing

Optical Technologies

-Development of new technologies and hybrid process chains between conventional manufacturing and laser solutions

-Focus of **complex shaped** (3D)

- Ultrasonic grinding (5 axis) of glass and ceramics
- Fine grinding of glass
- Laser polishing of glass
- Laser thermoforming of glass
- Selective laser sintering of fused silica powder
- Laser ablation of glass and ceramics

Jens Bliedtner, Guenter Graefe & Rupert Hector: Optical Technology. McCraw Hill. New York

Ernst-Abbe-Hochschule Jena University of Applied Sciences

-Research and development of different additive techniques

-material range: polymer, metal, glass

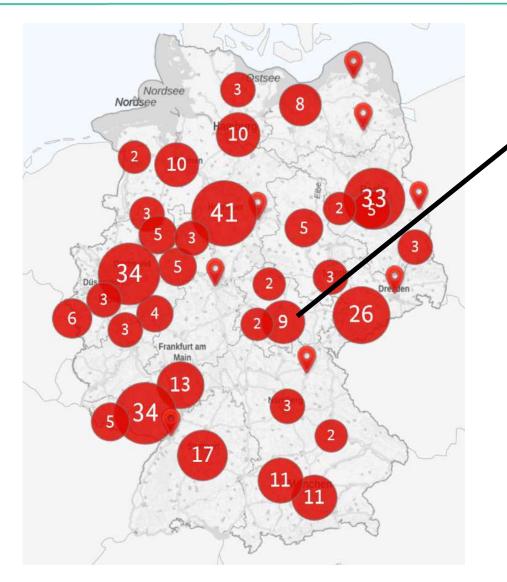
- Stereo lithography (SLA/DLP)
- Fused Deposition Modeling (FDM)
- Laser sintering (SLS)
- Polyjet
- Laser metal deposition
- Reverse Engineering

- Working group production and automation
- Research projects and application
- Example: Starting an AM process (cloud based)
- Lab session

- Working group production and automation
- Research projects and application
 - 1. Mittelstand 4.0
 - 2. THAT
 - 3. Application example (short overview)
- Example: Starting an AM process (cloud based)
- Lab session

- Working group production and automation
- Research projects and application
 - 1. Mittelstand 4.0
 - 2. THAT
 - 3. Application example (short overview)
- Example: Starting an AM process (cloud based)
- Lab session

Mittelstand- 🗩 Digital 🦳 Gefördert durch:


Bundesministerium für Wirtschaft und Energie

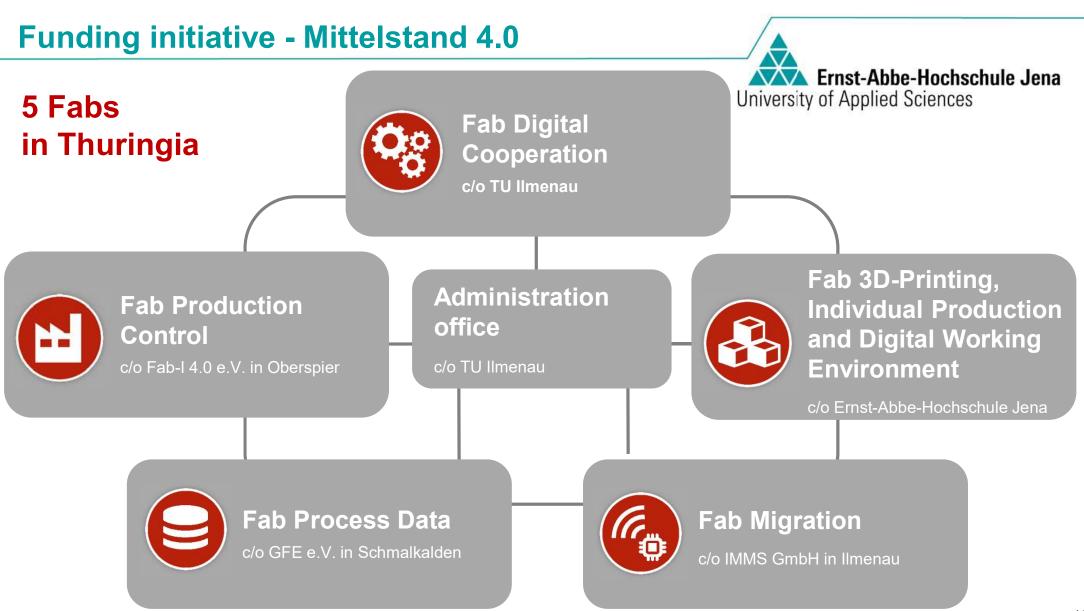
aufgrund eines Beschlusses des Deutschen Bundestages Ernst-Abbe-Hochschule Jena University of Applied Sciences

Mittelstand-Digital –

Strategies for the digital transformation of SMEs

Mittelstand 4.0 –
Digital Production
and Work Processes
funding initiativeeStandardsUsability

Ernst-Abbe-Hochschule Jena University of Applied Sciences


Ilmenau

Mittelstand 4.0

Kompetenzzentrum

Main aims

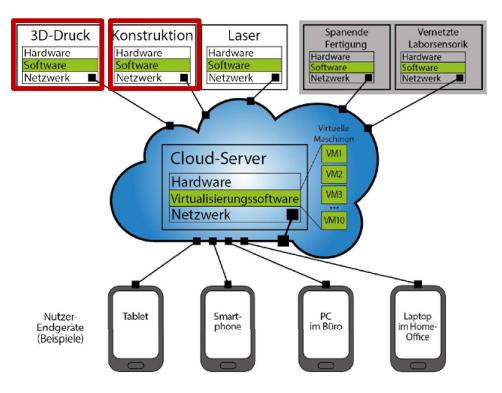
- To inform small and medium sized companies
- Awareness about digitalization
- Provide information, training and the opportunity for companies to view and test new solution
- No charges

Kompetenzzentrum Ilmenau

Fab 3D-Printing, Individual Production and Digital Working Environment

- **3D-Printing:** applications, requirements, necessary surroundings, data handling, security and optimization
- Individual Production: laser processes for individual applications, cloud solution, robot concepts and automation
- **Digital Working Environment:** new training concepts, digital work flows and digital business

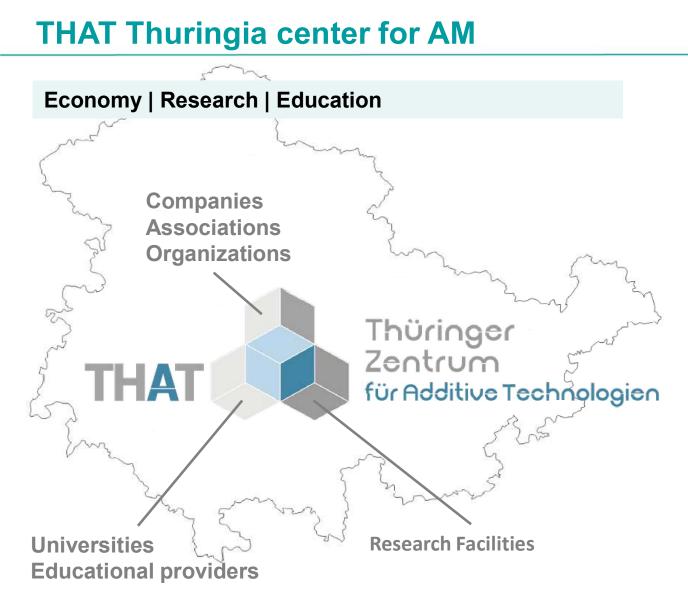
Ernst-Abbe-Hochschule Jena University of Applied Sciences


Demonstration examples

← → C ^a Ô www.additive-v	www.additive-verfahren.de 90%			M 🖸 🧿 🗾 🗏
Modellfabrik 3D-Druck				Ergebnis
01 Material	02 Einsatzszenario	03 Belastbarkeit	04 Produktanforderu	ngen 🛛 🗘
WERKSTOFF ®	Oberflächenqualitäten Beispiele für Einsatzbereiche: Überprüfung der Handhabung, Bedienung und Benutzung, für Variantenvergleiche, Maschinen- und Anlagenmodelle, Medizinische Modelle	MECHANISCHE BEANSPRUCHUNG	ABMASSE S bis 1mm x 1mm x 1mm	
	Funktionsprototyp	🔘 statische Belastung	O bis 150mm x 150mm x 150mm	
	Stückzahl 2 bis 5 Abbildung der exakten Form des Modells/Bauteils einschließlich der erforderlichen Oberflächenqualitäten Beispiele für Einsatzbereiche. Überprüfung von (einzelnen) Funktionalitäten (Funktionstest, Strömungstest, Montagetest), Unterstützung der Senenvorbereitung	HĀRTEGRAD	O bis 300mm x 300mm x 300mm	
		O Shore-Harte A	O bis 500mm x 500mm	
		Shore-Harte A0	Sondergrößen	
Metall Diese Option befindet sich aktuel an Aufbau und wird zu einem späteren Zoitpunkt zur Verlögung stehen.	technischer Prototyp Stuckzahl 3 bis 20 Fertigung eines Bauteils, das weitestgehend mit dem späteren Serienbauteil übereinstimmt Funktionalität des Modells ist vollständig Anforderungen sollen seriennah abgebildet werden	Shore-Härte D	OPAZITĂT O opak O transparent	
		TEMPERATURBESTÄNDIGKEIT		
		O 15-60 ℃		
	Kieinserie Stückzahl 3 bis 100 Fertigung eines Produktes in kleiner Anzahl (bis 100) Für diesen Einsatzbereich wird später auch das Vakuumgussverfahren als Option betrachtet	O 60-100 °C	OBERFLÄCHENQUALITÄT	
offen Diese Option befindet sich aktuell im Aufbau und wird zu einem späteren Zeitpunkt zur Verfügung stehen.		O 100-350 °C	Rauheit (Ra) 0,5 bis 2 µm	
		S 350-700 °C	S Rauheit (Ra) 2 bis δ	
	Serienfertigung Stückzahl 100 oder mehr Fertigung von Endprodukten, Stückzahl ab 100 Für diesen Einsatzbereich wird später ein Vergleich zum Spritzgießen als typisches Verfahren in der Serienfertigung als	⊗ 700-1050 °C	O Rauhelt (Ra) 5 bis 15 µm	
		⊗ > 1050 °C	C Rauheit (Ra) 10 bis 20 µm	

Online tool to select AM technique depending on your specific purposes

Demonstration examples


Cloud based software

Live demonstrations in our labs

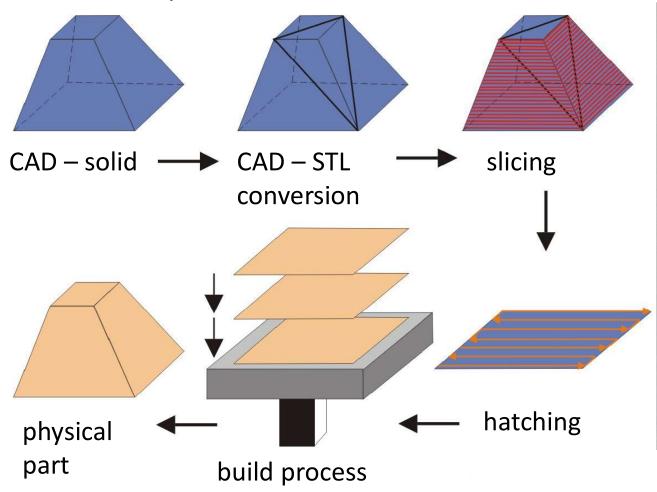
- 1. Starting an AM process
- 2. Programming CAD CAM chain Trump TruCell (laser cutting)

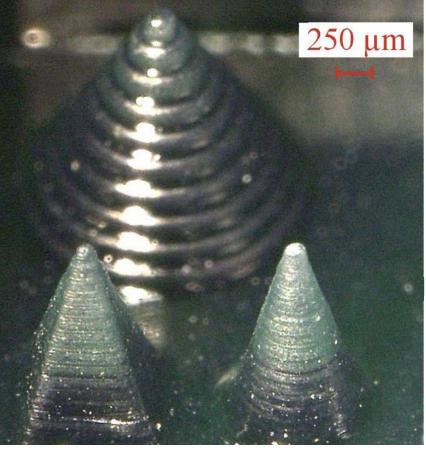
- Working group production and automation
- Research projects and application
 - 1. Mittelstand 4.0
 - 2. THAT
 - 3. Application example (short overview)
- Example: Starting an AM process (cloud based)
- Lab session

Ernst-Abbe-Hochschule Jena University of Applied Sciences

Aims:

- fast and efficient access to new AM techniques
- Extract technical potentials for companies
- Extend the visibility of regional research institutes
- Short term: fast solutions for companies with problems concerning AM
- Long term: center for AM technologies


- Working group production and automation
- Research projects and application
 - 1. Mittelstand 4.0
 - 2. THAT


3. Application example (short overview)

- Example: Starting an AM process (cloud based)
- Lab session

Basics and process chain

Stair-Stepping-Effect

Fused Deposition Modeling (FDM)

Research project: HP3D (High Performance 3D-Druck)

- Individualized products
- High strength
- Large scales

Example: individual canoe

- Time: **12 h**
- Costs: 18 kg of ABS (**2,68 €** per kg)

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Ernst-Abbe-Hochschule Jena University of Applied Sciences

Laser Metal Deposition (LDM)

Research project:

ProLaIn (Development of an individual and automated process chain for repairing cast aluminum parts)

- Rejection rate during casting < 15 %
- Repair small detected defected
- Remove the defect area
- Deposit it with layers of aluminum alloy

More possibilities for repairing of metal parts!

Ernst-Abbe-Hochschule Jena University of Applied Sciences

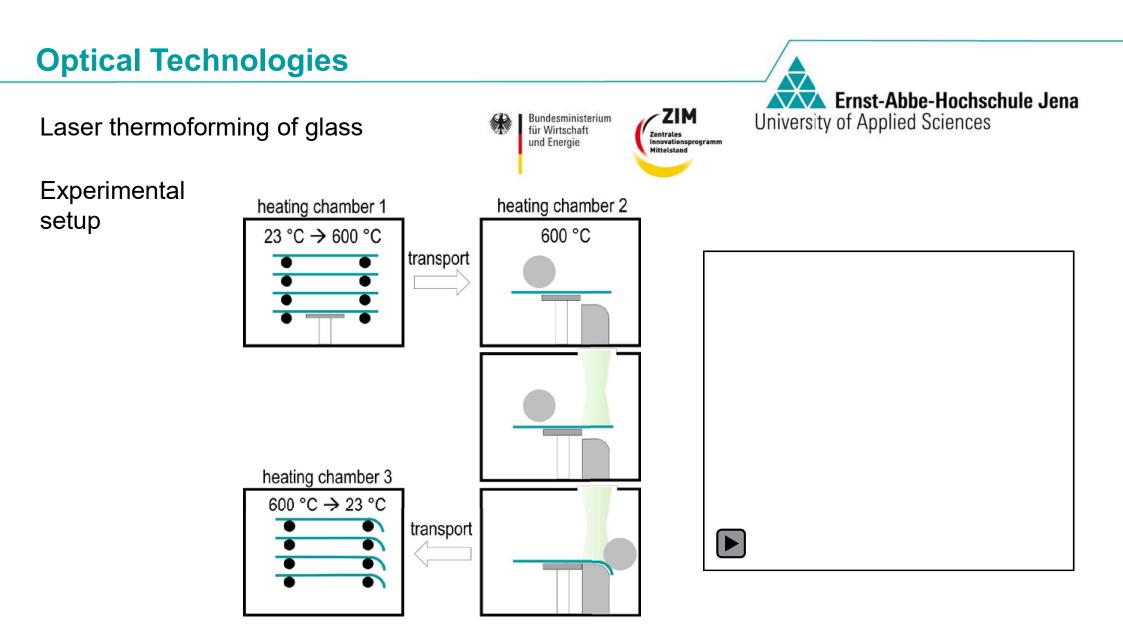
Optical Technologies

Laser thermoforming of glass

Research project:

HT3D and LaUmCo (flexible shaping of thin glass applying laser radiation)

- 3D freeform lead to new product design in consumer electronics and automotive industry
- Individual radius (deviation < ±200 nm)
- Decreasing process time


23

Ernst-Abbe-Hochschule Jena University of Applied Sciences

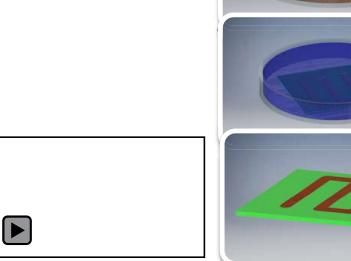
More detailed information and examples follow during the lab tour

Laser Material Processing

Laser surface texturing

PolymerAktiv (Functionalization of 2D and 3D polymer parts applying short pulse laser radiation)

Bundesministerium für Wirtschaft

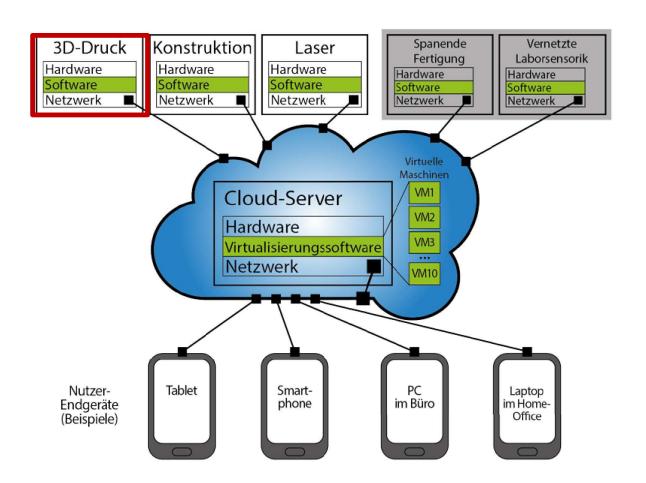

und Eneraie

Zentrales

Innovationsprogram Mittelstand

New process chain

- 1. Laser structuring
- 2. Wet chemical infection
- 3. Cu metallization
- 4. Final component


More detailed information and examples follow during the lab tour

- Working group production and automation
- Research projects and application
- Example: Starting an AM process (cloud based)
- Lab session


Starting AM process

Ernst-Abbe-Hochschule Jena University of Applied Sciences

With our AM engineer Patrick Ongom-Along

Live demonstration

AGbliedtner

Laser I Optik I 3D-Druck

Further information: www.ag-bliedtner.de

Start of the lab session